Sharp bounds for Steklov eigenvalues on star-shaped domains
نویسندگان
چکیده
منابع مشابه
Sharp Bounds for Eigenvalues and Multiplicities on Surfaces of Revolution
For surfaces of revolution diffeomorphic to S, it is proved that (S, can) provides sharp upper bounds for the multiplicities of all of the distinct eigenvalues. We also find sharp upper bounds for all the distinct eigenvalues and show that an infinite sequence of these eigenvalues are bounded above by those of (S, can). An example of such bounds for a metric with some negative curvature is pres...
متن کاملSharp Spectral Bounds on Starlike Domains
We prove sharp bounds on eigenvalues of the Laplacian that complement the Faber–Krahn and Luttinger inequalities. In particular, we prove that the ball maximizes the first eigenvalue and minimizes the spectral zeta function and heat trace. The normalization on the domain incorporates volume and a computable geometric factor that measures the deviation of the domain from roundness, in terms of m...
متن کاملSharp Bounds on Random Walk Eigenvalues via Spectral Embedding
Spectral embedding of graphs uses the top k eigenvectors of the random walk matrix to embed the graph into Rk. The primary use of this embedding has been for practical spectral clustering algorithms [SM00, NJW01]. Recently, spectral embedding was studied from a theoretical perspective to prove higher order variants of Cheeger’s inequality [LOT12, LRTV12]. We use spectral embedding to provide a ...
متن کاملOn Principal Eigenvalues for Periodic Parabolic Steklov Problems
LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...
متن کاملSharp upper bounds for the Laplacian graph eigenvalues
Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure and Applied Mathematics
سال: 2020
ISSN: 1869-6090
DOI: 10.21494/iste.op.2020.0544